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Theoretical results are presented concerning the reduction of chaotic escape from a potential well by means
of a harmonic parametric excitation that satisfies an ultrasubharmonic resonance condition with the escape-
inducing excitation. The possibility of incommensurate escape-suppressing excitations is demonstrated by
studying rational approximations to the irrational escape-suppressing frequency. The analytical predictions for
the suitable amplitudes and initial phases of the escape-suppressing excitation are tested against numerical
simulations based on a high-resolution grid of initial conditions. These numerical results indicate that the
reduction of escape is reliably achieved for small amplitudes and at, and only at, the predicted initial phases.
For the case of irrational escape-suppressing frequencies, the effective escape-reducing initial phases are found
to lie close to the accumulation points of the set of suitable initial phases that are associated with the complete
series of convergents up to the convergent giving the chosen rational approximation.
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I. INTRODUCTION =(gd)=1, angular brackets denoting the average over the
(common period 27q. To study the effect of the two weak
Incidental escape from a potential well is a ubiquitousharmonic perturbations, one calculates the Lyapunov expo-
phenomenon in the physical sciences and engineering. Homent (LE) for e #0: \ = Re(In[u+2(f,+ 79,)]). For smalle,
ever, the performance of a specific nonlinear system with ghe LE becomes
potential well subjected to a periodic excitation is often con-
sidered optimal if it operates in a periodic mode., inside l/e
the wel) [1]. Recently, the application of weak parametric A=Inp— E(
excitations(PE9 has been shown to be an effective tech-
nique for suppressing chaotic escdfe 4]. That theoretical To clarify the effect of the second resonant perturbatign
work focused on the case of subharmonic resonance between the reduction of instabilitiegositive LB, let us consider
the two driving frequencies involved) =pw, wheref) and  that, in the absence of the second perturbatigsQ), we
w are the escape-suppressing and escape-inducing frequere in a weakly unstable initial state with g 3(e/u)? such
cies, respectively. However, a number of experimefdl  that \~\"(7=0)=In u—3(e/u)?>=0. Then, by increasing
theoretical[6—8], and numerica[9] studies of diverse dy- 7, the LEN=\"(5=0)—3(e/u)?5? decreases and in some
namical systems show that chaos can be reliably eliminatedase may become negative, thus stabilizing
by other nonsubharmonic resonances. The purpose of this To provide a rigorous formulation of the technique, we
present work is to discuss the inhibition of chaotic escape foghall concentrate here on a simple model for a universal es-
nonsubharmonic resonances, and thence to approach the cas@e situation:
of incommensurate escape-suppressing excitations by means
of a series of ever better rational approximations, which are X=x—B[1+ 7 sin(Qt+ ¢)]x*>— 6+ ysin(wt), ()
the successive convergents of the infinite continued fraction
associated with the irrational ratid/w. where(), 5, and ¢ are the normalized frequency, amplitude,
Since the coexistence of infinitely many periodic unstableand initial phase, respectively, of the Pg<1), which will
solutions is today considered synonymous with chaos, wéave an inhibitory effect on the chaotic escape of the remain-
may test such a possibility by using the model of an unstabléng system ¢, y<1) [10], andw, &, and y are the normal-
limit cycle affected by two weak harmonic perturbationsized parameters of frequency, damping coefficient, and driv-
which satisfy an ultrasubharmonic resonance condition:  ing term amplitude, respectively.
The rest of the paper is organized as follows. In Sec. Il we

2
(1+7°)+0(&?). @

M

Xn+1=[ute(fy+ 79,)IX,, (1)  derive analytical results based on a Melnikov analy$s\)
concerning the ultrasubharmonic resonance caS$k:
with u>1, <1, f,=v2 cosn, andg,=v2 cospr/q), g>1  =pw/q, g>1 (p#q), p,q positive integers. In Sec. Il we

(p#09). A similar recursion relation witlpy=0 is considered apply the results of Sec. Il to the case of incommensurate
in Ref. [9]. Note that(f,)=(gn)=(f,gn)=0 and (f2) escape-suppressing excitations by considering the asymptotic
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behavior of a series of associated systems whose escape-Ref.[2] it is demonstrated that E¢6) can only be true for
suppressing frequencies are ever better rational approximéeertain values ofw, (2, and ¢ if a resonance condition is
tions of the irrational escape-suppressing frequency. In Sesatisfied,pw=q{}, for some positive integerp and g. In
IV we present numerical evidence supporting the theoreticatuch a situation, the relationship
predictions from previous sections. Finally, Sec. V gives a

brief summary of the results. P 2m+1-¢lm

= 7
q 2n+1 0
Il. MELNIKOV ANALYSIS

_ _ . with m,n non-negative integers is a sufficient condition for
Melnikov analysig§ 11] has become standard for detecting g (g) to be satisfied for an infinity of, values. Finally, for

the splitting of invariant manifolds for a wide variety of dy- o subharmonic case€1), B=B,,,=Ap’ is a sufficient
’ ma

namical systems close to “integrable” systems with aSSOCi'condition for Eq.(6) to be satisfied for alt, [2].

ated separatrices. As is well known, its predictions for the 0. o Litrasubharmonic casg*1, p#q) there exist
appearance of _chaos are poth approxmﬂte MA ISaPer  gifferent conditions[that given by Eqg.(7) among them
turbative techniqueand limited (only valid for orbits start- which are sufficient for Eq(6) to be satisfied for an infinity

ing at point§ sufficiently hear the_ separafriince MA has of ty values but not sufficient for E¢6) to be satisfied for all
been described many times by different authors, we shall nqt

. o . ; i.e., M(ty) may still present simple zerbsWe choose
discuss it in detail here, but refer the reader to that Ilteratur(-;(;{’m[Ong the(r‘r?)that c):/onditign makimg(tp) as n(]anar as possible
[11-13. It is worth mentioning that the criterion for a ho- to the tangency condition fd8=B, . Oin the sense thaat
moclinic tangency—accurately predicted by MA—in diverse . N )
systemd1,14] is coincident with the change from a smooth leas) one of the local maxima ¥ (to) is the lowest:
to an irregular, fractal-like basin bounddib]. These results P 2mtl-olm
connect MA predictions with those concerning the erosion of _——

the basin boundary. q 2n ,
By applying MA to Eq.(3) one straightforwardly obtains )
the Melnikov function(MF) [2] B) >1— ¢ (8)
q A’

M(tp)=—C—Acogwty) + BcogOty+ ¢), (4)
with m,n non-negative integers. This means that, although

with now chaotic transients cannot be completely eliminaied,
65 homoclinic bifurcations cannot be suppressezhe would
C=——>, (5) expect to have a fair chance of reducing chaotic escape. Fig-
5B ure 1 depicts, as an example, the normalized MF

6 M’ (79,¢)=M(tg)/A versusry=wty and¢ for B=B,, and
A=Y 2 csch{ 7o), the resonancep/q=1{2/3,3/3. Note that, in each period of
B M', its local maxima(with respect tory) are the lowest
3 (with respect top) at the suitable initial phases given by Eq.
m™n

B= g7 Q202+ 1)(Q%+ d)csch m0). ®).

R ki
As is well known[13], the MFM (t,) measures the distance emarks

between the perturbed stable and unstable manifolds in the First, for a given resonang®q, one hag suitable values
Poincafesection at[o_ If M(tO) has a Simp|e zero, then a of the initial phase which are Uniformly distributed in the
homoclinic bifurcation occurs, signifying the possibility of interval[0,2m], A ¢iapie=277/q being the gap between any
chaotic behavior, i.e., only necessary conditions for steadjwo adjacent suitable initial phases. Note that a suitable
chaos are obtained from MA, and therefore one alwayséas, initial phase for all the resonancesq. It is worth mention-
priori, the possibility of finding sufficient conditions for the ing that this remarkable property @bgiapis=7 does not
elimination of even transient chaos. hold for any suitable initial phase of the two-well Duffing
Let us suppose that, in the absence of any escapéscillator considered in Ref8]. For such a Duffing oscilla-
Suppressing excitationB(: 0), the associated MHVIO(IO) tor, an upper threshold for the amplitude is also deduced by
= —C—Acost,) changes sign at sontg, i.e., C<A. If imposing the condition that the chaos-suppressing excitation
we now let the escape-suppressing excitation act on the sygay not enhance the initial cha¢sf. Ref.[8]). This upper
tem such thaB<A—C, this re|ati0nship represents a suffi- threshold is pertinent since all the solutions of the Dufflng
cient condition forM (t,) to change sign at sontg. Thus, a  oscillator are bounded. In particular, one can observe chaos
necessary Condition fdm (tO) to a|WayS have the same Sign Conﬂned W|th!n one Of the We||S or ChaOS around the two
is B>A—C=B,. It is obvious that for this relationship to Wells depending upon the values of the parameters. How-
be also a sufficient condition favi (t,) to be negative for all €Ver, for our escape oscillat@®) (whose associated potential

to, one must have has a single we)] one could expect that any value of the
amplitude of the escape-suppressing excitation higher than
A—B=BcoqOQty+V¥)—Acog wtp). (6) its corresponding lower threshold would have an enhancing
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@ (a)=(2.3) IIl. INCOMMENSURATE ESCAPE-SUPPRESSING
S EXCITATIONS

/;’/z\\\\\\\\\\ \ \
¥

I

We now demonstrate the possibility of reducing chaotic
escape by incommensurate REs., )/w irrational) from the
results of the preceding section. This involves replacing the

irrational ratio()/w with approximations derived from con-
04 AT tinued fractions. This technique has been much used in
M LAY Al !::\‘\\\\\\ studying phase-locking phenomena in both dissipative and
\\\\\\\\\\\\\\\\\\\\\\Q P~ \ A 5,, Hamiltonian systems as well as in characterizing strange
\\\\\\\\\\\\\\\\\\\\\\ A‘,M\\\\‘\\\\\\\\\\“ \\\ 3 nonchaotic attractors in quasiperiodically forced systems
\\\\\\\\\\\ ,ﬁ\\\‘\\\\\\\\\\\\ [16]. Our approach clearly differs from that based on the
N '\\\\\\\\\\\\\ 4 application of high-frequency PEs, which is discussed in the
“‘@\‘\\ framework of an effective averaged nonlinear equation in

Ref.[17]. To illustrate the procedure we intentionally choose

the golden sectiof)/ w=®d=(\/5—1)/2, since it is the irra-
0 0 tional number that is the worst approximated by rational
| 67 numbers in the form of continued fractions. As is well

known, ® can be approximated by the sequence of rational
numbers )/ ) =F_,/F whereF,=1,1,2,3,5,..., are the
Fibonacci numbers such that |im..(Q/w),=(5—1)/2.
For each ()/w), we replace the quasiperiodically excited
system(3) [with Q=(\/5—1)w/2] by the periodically ex-
cited system

Y
Ui |
i \\\\\\\\\

\{:

\
A

|
04 g \ “W‘“\ ) (Fis o
0 \\\\\\\\\\\\\\\\\\\W@\\\\\\\\\\\\ \\ \\ \‘ o X=x—p 1+7;S|n(F—kwt+ ¢) x2— 8x+ vy sin(wt),
\\\:‘;\“ Ml Ll 2%
N\ C 4 P -
-0.2 4\\\\\\\ [ﬁ\\\\\\\\\\\\\\«\‘lﬂh \\\ ! \\ 4 giving a sequence of periodically excited systems whose in-
4\\\‘]"%\\\\\\\\\\ volved frequencies satisfy an ultrasubharmonic resonance
2n L ‘ 3x ¢ condition. Now we can apply the theoretical predictions of
5 Sec. Il to each systertll) for increasing values df. Thus,
T the corresponding values of the suitable initial phase and
TO 1020 5 amplitude ardcf. Egs.(8) and(9), respectively
FIG. 1. Normalized Melnikov functiorM’(7q,$)=M/(ty)/A ¢suitab|ek:ﬁ 2m+1—-2n F;l) (mod27), (12
k

[cf. Eq. (4)] vs 7y and ¢ in the rangg —0.2,0.4, ro=wt,, for B

=B,,,=A—C andC/A=0.8. Resonancp/q=(a) 2/3,(b) 3/5. Ob-
serve that the local maxim@avith regard tor,) are the lowestwith N C R (13)
regard tog) at m, 5m/3, /3 (, 95, 3m/5, Tml5, wl5), respec- Mmin.k ko

tively, for p/q=2/3 (p/q=13/5). The variable®’, 7y, and¢ (rad

are dimensionless. 108y

R P 1 IFOT 0 (Fr 1 IF 07+ L[ 0X(Fe_1IF0 7+ 4]

(or at least not suppressiveffect on the initial escape situ-

ation. We shall see in Sec. IV that numerical experiments sinhmwF_1/Fy)
support this conjecture. Secondlgianie=0 (Psuitapie= /) X sinrw) (14
is the lowest suitable initial phase for all the resonanules
with g even (odd). Third, the lowest amplitude threshold wherem,nare non-negative integers.
Nmin @Ssociated withB ., is
c Remarks
Mmin= ( 1- K) R, 9 First, for fixed w, the ratio 7min/7min~ CONVErges very
quickly to 1 ask—o. This means that the values @f,,x
with associated with early convergen(®5, 5/8, 8/13,.). are re-
ally very close to the limiting valuey,.. corresponding to
_ 108yw? sinh(7(}) ®. Second, the successive convergentsbofl/1, 1/2, 2/3,
R= Q%02+ 1) (0% 4) sinf(7w) (100 3/5 5/8, 8/13, 13/21, 21/34, 34/55, present one even de-
nominatorq for every two odd, and thus whether O is or is
[cf. Eq.(5)]. not one of the associated suitable initial phases depends upon
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the parity ofq (cf. the second remark of Sec).lAlso 7 is a
suitable initial phase fomll the convergentgcf. the first
remark of Sec. ). Third, in contrast to the aforementioned
asymptotic behavior of the amplitudes,,x, the number of
suitable initial phasespqyiapiex teNds to infinity ask—ce,
and for each rational approximation 4 given by a certain
convergent, the corresponding values @, iapex are uni-
formly distributed in the interva]0, 2. Since two succes-
sive convergentd-,_,/F,, F/Fy., differ only in ever
higher decimal places ds—«, one should expect that the
suppressive effectivéobserved values of the initial phase
detiectives» COrresponding to a certain convergent, would be
related not only to its corresponding valug§;iapex but also
to the suitable initial phases associated with its preceding
convergents. In particular, the effective valu@sective
should correspond to the points where the suitable initial
phases associated with the chosen convergent and its prece-
dents concentrate. One expects this prediction to gain in ac- £\ 5 Erosion basin of the syste(8) for =1, 5=0.1, o
curacy ask—ee. =0.85, y=0.08, and7=0 in the window 0<x<1.8, —0.8<X
<0.8.

dx / dt

IV. REDUCTION OF THE EROSION OF NONESCAPING

BASINS
={0,7/2,7,37/2} [cf. Egs.(5) and (8)]. One sees that the

_For the escape modé8), the initial conditions will deter-  normalized probability presents minima, as a function of the
mine, for a fixed set of its parameters, whether the systeritial phase, that come progressively closer to the predicted
escapes to an attractor at infinitwith x—o ast—=), or  gyjtable values as the amplitude decreases. The reduction of
settles into a bounded oscillation. As is well knofin, there  -ha0tic escape is achieved foj=0.008 over a range
can exist a rapid and dramatic erosion of the safe basipontered on the initial phasep= ¢gitani=37/2. A
(union of the basins of the bounded attractaise to en- ¢, .her example is shown in Fig. 4 for the resonance
croachment by the basin of the attractor at infifigcaping p/q=8/9 and 7={0.08,0.03,0022 In this case, the
basin. We shall show in the following how the erosion of the Eheoretical preyc]jictioﬁs ’ ére;/n;mwo.0217 and ¢S;itable

safe basin is reduced under the theoretical conditions esta:{m9 7/3,5719,7m/9,7,117/9,13r/9, 157/9,17m/9}.  For
lished above. To generate the basins of attraction numeri- P ’ . ' ' ! '

: : - =0.08 the normalized probability reaches its maximum
cally, we select a grid ofuniformly distributed 300X 300 7 _ L -
starting points in the region of phase spafe(t=0) value (~1.34) for any initial phase, which represents the

e . X o situation where the nonescaping basin has been completely
€[0,1.8], X(t=0)<[—0.8,0.8}. From this grid of initial destroyed(for the resolution considered hérdor 7<0.08
conditions, each integration is continued until eitkxeex-

. . . the normaliz r ilit lely presents minima at the val-
ceeds 20, at which point the system is deemed to have es-e ormalized probability solely presents aatfheva

caped(i.e., to the attractor at infinijy or the maximum al-

lowable number of cycles, here 20, is reached. In the absence pPNo T s W
- i itati 1348 8 Vo0 8

of an escape-suppressing excitation<0), we assume that Y by & | £

the system presents a dramatic erosion and stratification of = -

the basin(as in the example shown in Fig. 2 where the color Lo

white represents the nonescaping basin and black the escap-
ing basin. For the set of parameters considered in Fig. 2
(B=1,6=0.1,y=0.08w=0.85), we calculated, for each 1.14 X /”"“'s(\
resonance/q, the escape probability normalized to that of . k \’S@«.‘WJ;
the corresponding case with no escape-suppressing excita- 10 N s
tion, P(#%)/P(7n=0), versus the initial phase for several
values of 5. Typically we found that no reduction of initial
escape is attained fop> 75, and arbitrary initial phase, 093 ; 1 A
with 7, given by Eq. (9). For small amplitudes

=< 7min), the probabilityP(##0) becomes lower thaR (% 2¢/m
=0) over short ranges Qf’_Wh'Ch_a_r_e typ'ca"}/ centered on FIG. 3. Normalized escape probabilifgimensionless quantity,
(some of the predicted suitable initial phasés the afore-  gee the teytvs ¢ (rad) for four values of the amplitude:
mentioned sengefor each resonancp/q. As an example, =0.025(A), 0.015(A), 0.01 (%), and 0.008(M). System param-
Fig. 3 showsP(7)/P(7#0) vs ¢ for the resonanc@/q  eters arg3=1, 5=0.1,y=0.08,0=0.85, andp/q= 3/4. Solid lines
=3/4 and the amplitudes={0.025,0.015,0.010,0.0p8The  are plotted solely to guide the eye. Dotted vertical lines indicate the
theoretical predictions are#n,;;;~0.0242 and ¢, iape  predicted suitable initial phases.

P(n)/P(n=0)

w
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1.47— . , =
1.035 , (?) p/g 3/5. :
1.029 .
1.3 f 24
e 4T
- \“\‘/\‘\ T 1016F e E .
o 124 £ " N O
l‘.l-_ B, & 1.009 - \ /\ M/ E
=4 “’\"X& = 1.003f A " LT
PN 1.14 \5 Rx *\\ SR Hxd
G & 099+ \jg*/,f s
A 0.989 | * .
1.0 0 2 4 6 8 10
: : S¢/n
0.9 . T . ———— : .
0. 2 4 6 8 10 12 14 16 18 (b) p/q=8/13
9/n 1.022 d : 5 5 f
FIG. 4. Normalized escape probabiliglimensionless quantity, . Lo16 *x,‘& Kﬂf
see the tejtvs ¢ (rad for three values of the amplitude:n T ook il Z
=0.08(A), 0.03(A), and 0.022%). p/q=8/9, and the remaining = \ fjx
parameters are as in Fig. 3. Solid lines are plotted solely to guide > 1.003} o . fz\ﬂ x ]i /\
the eye. Dotted vertical lines indicate the predicted suitable initial ?E *‘*V{V T\J"[ LN v 3[
phases. e 1\*/

0'9890 2 4 6 8 10 12 14 16 18 20 22 24
ues predicted above. One sees thatfer0.022 (= 7, the 130/n

reduction of chaotic escape is achieved over two ranges of (¢) p/a=0.618033988749804

the initial phase centered on each of the suitable initial :
phaseq77/9,7}. ‘-‘mi N 7‘7@(\/"
Consider now the case of incommensurate escape- 1016 *\/\*\** Y]
suppressing excitations. The only “off-resonance” excita- ’f \ / *
tions that can be numerically considered are those with irra- £ 109 7 i} *\* 1
tional frequencies to the limits of computational precision.  ~ 03} \*/*\j N iy ;J’\/* e i
As in the previous examples of arbitrary resonanu&s we £ LY %/\Jx Al &/V\//’ ¥
found—for sufficiently small amplitudes 7= 7mn)—that P 099 TV, Yox 1
the overall behavior of the normalized escape probability 0.989 U S
presents a minimum neap= ¢ y= 7 (see Fig. 4 as 00 01 02 03 04 05 06 07 08 09 1.0
expected(cf. the first remark in Sec. )l Figure 5 shows 9/2n

P(7n)/P(n=0) vs ¢ for the amplitudey=0.010 and three
values of p/q: the two convergents 3/5, 8/13, and _

. . . see the textvs ¢ (rad) for »=0.01, =1, §=0.1, y=0.08, and
0.618 033988 749, this last beidgto the limit of computa- ©=0.85. p/q=(a) 3/5, (b) 8/13, and(c) 0.618 033 988 749 894

tional precision consi(_jered here. The theoretical predictionfz(\/g_ 1)/2]. Solid lines are plotted solely to guide the eye. Dot-
for the threshold amplitude ang,~0.028 57, 0.028 00, and ted vertical lines indicate the predicted suitable initial phases.

0.027 91, respectivelycf. Egs. (13) and (14)], which are

very close as predictettf. the first remark in Sec. ll In  (and also the remaining parameters fixedquite similar for

Fig. a), there are some clear-cut additional minima—whichall the successive convergents beginning with the third con-
are not associated with any of the corresponding suitablgergent or so, as can be appreciated by comparison of Figs.
initial phases ¢gitapie={ 7/5,37/5,7,77/5,97/5}—that are  5(b), 5(c), and &c). This is coherent with the insensitivity of
absent from the two lower plots in Fig. 4. Typically, the 7, .. with regard to the convergent ord@f. the first remark
number of such additional “off-prediction” minima increases in Sec. Ill). Figure Gb) [and to a lesser degree Fig(cH

with increasing convergent order, as can be seenpfor  shows that the overall behavior B )/P(7=0) presents a
=8/13 in Fig. §b). This confirms(see also Fig. 6 for addi- few dominant minima at certain effective initial phases
tional examplesthe prediction in the third remark in Sec. ¢ gecive (Cf. the third remark in Sec. Il] which cannot be

lll. It is also observed that, in general, the plot of the nor-explained solely on the basis of the predicted suitable initial
malized escape probability is asymmetric with respect to thephasespsiapi=1(2n—1)7/55,n=1,...,53. In order to test
particular suitable initial phaségine= 7: the ranges where the conjecture about the origin of the effective initial
reduction of chaotic escape occurs are largerdier than  phases(cf. the third remark in Sec. IJ) we calculated the

for ¢>m (see Figs. 5 and)6 Figure 6 gives plots of the histogram shown in Fig. 7, which is a plot of the density of
normalized escape probability vs the initial phase for thesuitable initial phases associated with the complete series of
convergent p/q=34/55 and the amplitudes »  convergents of ® up to the ninth order p/q
={0.010,0.015,0.030 We typically found that the overall ={1/1,1/2,2/3,3/5,5/8,8/13,13/21,21/34,34/5& the initial
behavior of P(7)/P(7=0) vs ¢ for a fixed amplituderz  phase. One observes three remarkable properties. First, the

FIG. 5. Normalized escape probabilifsimensionless quantity,
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1.108 !(az) n=0020 ; 6 12 T
P i A B -1
1,095 = oL pla={1/1,1/2,2/3,3/5, 5/8, 1
= 1 8/13,13/21,21/34,34/55) ]
= 1.082 S r N
T =
£ g 6r 5
T lLoss 5 sL ]
~ H ia) L _
G 1.055 | E 4 ]
& o4 @ 3 =
Gy
1.029 L SEEEEEREESEEEEER L S 2
o 55 110 ? 1
vl
55¢/n g 0
- (b) n=0.015 00 01 02 03 04 05 06 07 08 09 1.0
‘ CiTiiiiiiiiiin : /27
1029 |3 FIG. 7. Histogram showing the density of suitable initial phases
|‘$ (dimensionless quantity, see the fefdr the first nine convergents
E? 1.016 of the golden ratio, vsp (rad).
GRS null density is the largest. This is coherent with the fact that
- the reduction of chaotic escape expectedpglipie= 7 IS
0.989 I H hardly observable, it being sharply localized when in fact it
o 55 110 does occufsee, e.g., Figs.(b) and 5c)]. It is expected that
55¢/n the mechanism discussed for the reduction of chaotic escape
~0.010 by incommensurate PEs will work for amplitudes sufficiently
1.029 rrr ,,(c) e lower than the theoretically predicted threshold amplitudes.
1.022
= 1016 V. CONCLUSION
% 1.009 In sum, we have shown that the effectiveness of a PE that
&~ oo satisfies an ultrasubharmonic resonance condition with the
= escape-inducing excitation in reducing chaotic escape from a
& 09%¢ potential well strongly depends on its initial phase. Analyti-
0.989 cal estimates of the suitable initial phases and amplitudes for

g B reducing the chaotic escape were found by means of MA. In
55 addition, the reduction of chaotic escape by applying small-
o/m . .
amplitude incommensurate PEs was demonstrated from the
FIG. 6. Normalized escape probabilitsimensionless quantity, findings for ultrasubharmonic resonances. For this case, the
see the tejtvs ¢ (rad for the convergenp/q=34/55, and the proposed reduction mechanism demonstrates the great com-
remaining parameters as in Fig. 8= (a) 0.020,(b) 0.015, andc) plexity of the role played by the initial phase of the PE. In
0.010. Solid lines are plotted solely to guide the eye. Dotted verticajeneral, numerical results based on a high-resolution grid of
lines indicate the predicted suitable initial phases. initial conditions showed excellent agreement with the theo-
retical predictions of the escape-reducing initial phases,
histogram is asymmetric with respect to the central vatue while the values obtained numerically of the amplitude for
= 1. the number of maxima of the density function is largerescape reduction wef&é some casgdower than those pre-
for ¢<m than for ¢>. This is coherent with the afore- dicted from MA. We should emphasize that the theoretical
mentioned asymmetry of the distribution of ranges where approach we have discussed as well as the conclusion that
reduction of chaotic escape occurs. Second, the density funchaos can be reducddr even completely suppresseboly
tion has its main maximédensity=3) at and only at initial incommensurate PEs are both general enough to be applied
phases that roughly coincide with the aforementioned effecto many other dissipative nonautonomous systems.
tive initial phaseSpegecive[COMpare Figs. @) and 7. Third,
the dt_ansny _fu_n_ctlon has its highest maximum at the particu- ACKNOWLEDGMENT
lar suitable initial phaségyine= 7 as predictedcf. the sec-
ond remark in Sec. 1)l Such a maximum is the most isolated  Partial financial support was provided by DGESIC
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