
PHYSICAL REVIEW E, VOLUME 65, 036213
Inhibition of chaotic escape from a potential well by incommensurate
escape-suppressing excitations
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Theoretical results are presented concerning the reduction of chaotic escape from a potential well by means
of a harmonic parametric excitation that satisfies an ultrasubharmonic resonance condition with the escape-
inducing excitation. The possibility of incommensurate escape-suppressing excitations is demonstrated by
studying rational approximations to the irrational escape-suppressing frequency. The analytical predictions for
the suitable amplitudes and initial phases of the escape-suppressing excitation are tested against numerical
simulations based on a high-resolution grid of initial conditions. These numerical results indicate that the
reduction of escape is reliably achieved for small amplitudes and at, and only at, the predicted initial phases.
For the case of irrational escape-suppressing frequencies, the effective escape-reducing initial phases are found
to lie close to the accumulation points of the set of suitable initial phases that are associated with the complete
series of convergents up to the convergent giving the chosen rational approximation.
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I. INTRODUCTION

Incidental escape from a potential well is a ubiquito
phenomenon in the physical sciences and engineering. H
ever, the performance of a specific nonlinear system wit
potential well subjected to a periodic excitation is often co
sidered optimal if it operates in a periodic mode~i.e., inside
the well! @1#. Recently, the application of weak paramet
excitations~PEs! has been shown to be an effective tec
nique for suppressing chaotic escape@2–4#. That theoretical
work focused on the case of subharmonic resonance betw
the two driving frequencies involved,V5pv, whereV and
v are the escape-suppressing and escape-inducing freq
cies, respectively. However, a number of experimental@5#,
theoretical@6–8#, and numerical@9# studies of diverse dy-
namical systems show that chaos can be reliably elimina
by other nonsubharmonic resonances. The purpose of
present work is to discuss the inhibition of chaotic escape
nonsubharmonic resonances, and thence to approach the
of incommensurate escape-suppressing excitations by m
of a series of ever better rational approximations, which
the successive convergents of the infinite continued frac
associated with the irrational ratioV/v.

Since the coexistence of infinitely many periodic unsta
solutions is today considered synonymous with chaos,
may test such a possibility by using the model of an unsta
limit cycle affected by two weak harmonic perturbatio
which satisfy an ultrasubharmonic resonance condition:

xn115@m1«~ f n1hgn!#xn , ~1!

with m.1, h,1, f n5& cosn, andgn5& cos(pn/q), q.1
(pÞq). A similar recursion relation withh50 is considered
in Ref. @9#. Note that ^ f n&5^gn&5^ f ngn&50 and ^ f n
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2&51, angular brackets denoting the average over

~common! period 2pq. To study the effect of the two wea
harmonic perturbations, one calculates the Lyapunov ex
nent ~LE! for «Þ0: l5Rê ln@m1«(fn1hgn)#&. For small«,
the LE becomes

l5 ln m2
1

2 S «

m D 2

~11h2!1O~«3!. ~2!

To clarify the effect of the second resonant perturbationgn
on the reduction of instabilities~positive LE!, let us consider
that, in the absence of the second perturbation (h50), we
are in a weakly unstable initial state with lnm*1

2(«/m)2 such
that l'l1(h50)[ ln m21

2(«/m)2*0. Then, by increasing
h, the LEl5l1(h50)2 1

2 («/m)2h2 decreases and in som
case may become negative, thus stabilizingx.

To provide a rigorous formulation of the technique, w
shall concentrate here on a simple model for a universal
cape situation:

ẍ5x2b@11h sin~Vt1f!#x22d ẋ1g sin~vt !, ~3!

whereV, h, andf are the normalized frequency, amplitud
and initial phase, respectively, of the PE (h!1), which will
have an inhibitory effect on the chaotic escape of the rem
ing system (d,g!1) @10#, andv, d, andg are the normal-
ized parameters of frequency, damping coefficient, and d
ing term amplitude, respectively.

The rest of the paper is organized as follows. In Sec. II
derive analytical results based on a Melnikov analysis~MA !
concerning the ultrasubharmonic resonance case:V
5pv/q, q.1 (pÞq), p,q positive integers. In Sec. III we
apply the results of Sec. II to the case of incommensur
escape-suppressing excitations by considering the asymp
©2002 The American Physical Society13-1
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R. CHACÓN AND J. A. MARTÍNEZ PHYSICAL REVIEW E65 036213
behavior of a series of associated systems whose esc
suppressing frequencies are ever better rational approx
tions of the irrational escape-suppressing frequency. In S
IV we present numerical evidence supporting the theoret
predictions from previous sections. Finally, Sec. V gives
brief summary of the results.

II. MELNIKOV ANALYSIS

Melnikov analysis@11# has become standard for detecti
the splitting of invariant manifolds for a wide variety of dy
namical systems close to ‘‘integrable’’ systems with asso
ated separatrices. As is well known, its predictions for
appearance of chaos are both approximate~the MA is a per-
turbative technique! and limited~only valid for orbits start-
ing at points sufficiently near the separatrix!. Since MA has
been described many times by different authors, we shall
discuss it in detail here, but refer the reader to that literat
@11–13#. It is worth mentioning that the criterion for a ho
moclinic tangency—accurately predicted by MA—in diver
systems@1,14# is coincident with the change from a smoo
to an irregular, fractal-like basin boundary@15#. These results
connect MA predictions with those concerning the erosion
the basin boundary.

By applying MA to Eq.~3! one straightforwardly obtains
the Melnikov function~MF! @2#

M ~ t0!52C2A cos~vt0!1B cos~Vt01f!, ~4!

with

C5
6d

5b2 , ~5!

A5
6pg

b
v2 csch~pv!,

B5
3ph

5b2 V2~V211!~V214!csch~pV!.

As is well known@13#, the MFM (t0) measures the distanc
between the perturbed stable and unstable manifolds in
Poincare´ section att0 . If M (t0) has a simple zero, then
homoclinic bifurcation occurs, signifying the possibility o
chaotic behavior, i.e., only necessary conditions for ste
chaos are obtained from MA, and therefore one always haa
priori , the possibility of finding sufficient conditions for th
elimination of even transient chaos.

Let us suppose that, in the absence of any esca
suppressing excitation (B50), the associated MFM0(t0)
52C2A cos(vt0) changes sign at somet0 , i.e., C<A. If
we now let the escape-suppressing excitation act on the
tem such thatB<A2C, this relationship represents a suf
cient condition forM (t0) to change sign at somet0 . Thus, a
necessary condition forM (t0) to always have the same sig
is B.A2C[Bmin . It is obvious that for this relationship to
be also a sufficient condition forM (t0) to be negative for all
t0 , one must have

A2B>B cos~Vt01C!2A cos~vt0!. ~6!
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In Ref. @2# it is demonstrated that Eq.~6! can only be true for
~certain! values ofv, V, andf if a resonance condition is
satisfied,pv5qV, for some positive integersp and q. In
such a situation, the relationship

p

q
5

2m112f/p

2n11
~7!

with m,n non-negative integers is a sufficient condition f
Eq. ~6! to be satisfied for an infinity oft0 values. Finally, for
the subharmonic case (q51), B5Bmax[A/p2 is a sufficient
condition for Eq.~6! to be satisfied for allt0 @2#.

For the ultrasubharmonic case (q.1, pÞq) there exist
different conditions@that given by Eq.~7! among them#
which are sufficient for Eq.~6! to be satisfied for an infinity
of t0 values but not sufficient for Eq.~6! to be satisfied for all
t0 @i.e., M (t0) may still present simple zeros#. We choose
among them that condition makingM (t0) as near as possibl
to the tangency condition forB5Bmin , in the sense that~at
least! one of the local maxima ofM (t0) is the lowest:

p

q
5

2m112f/p

2n
,

S p

qD 2

.12
C

A
, ~8!

with m,n non-negative integers. This means that, althou
now chaotic transients cannot be completely eliminated~i.e.,
homoclinic bifurcations cannot be suppressed!, one would
expect to have a fair chance of reducing chaotic escape.
ure 1 depicts, as an example, the normalized M
M 8(t0 ,f)[M (t0)/A versust0[vt0 andf for B5Bmin and
the resonancesp/q5$2/3,3/5%. Note that, in each period o
M 8, its local maxima~with respect tot0! are the lowest
~with respect tof! at the suitable initial phases given by E
~8!.

Remarks

First, for a given resonancep/q, one hasq suitable values
of the initial phase which are uniformly distributed in th
interval @0,2p#, Dfsuitable[2p/q being the gap between an
two adjacent suitable initial phases. Note thatp is a suitable
initial phase for all the resonancesp/q. It is worth mention-
ing that this remarkable property offsuitable5p does not
hold for any suitable initial phase of the two-well Duffin
oscillator considered in Ref.@8#. For such a Duffing oscilla-
tor, an upper threshold for the amplitude is also deduced
imposing the condition that the chaos-suppressing excita
may not enhance the initial chaos~cf. Ref. @8#!. This upper
threshold is pertinent since all the solutions of the Duffi
oscillator are bounded. In particular, one can observe ch
confined within one of the wells or chaos around the t
wells depending upon the values of the parameters. H
ever, for our escape oscillator~3! ~whose associated potentia
has a single well!, one could expect that any value of th
amplitude of the escape-suppressing excitation higher t
its corresponding lower threshold would have an enhanc
3-2
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INHIBITION OF CHAOTIC ESCAPE FROM A . . . PHYSICAL REVIEW E65 036213
~or at least not suppressive! effect on the initial escape situ
ation. We shall see in Sec. IV that numerical experime
support this conjecture. Second,fsuitable50 (fsuitable5p/q)
is the lowest suitable initial phase for all the resonancesp/q
with q even ~odd!. Third, the lowest amplitude threshol
hmin associated withBmin is

hmin5S 12
C

ADR, ~9!

with

R5
10bgv2

V2~V211!~V214!

sinh~pV!

sinh~pv!
~10!

@cf. Eq. ~5!#.

FIG. 1. Normalized Melnikov functionM 8(t0 ,f)[M (t0)/A
@cf. Eq. ~4!# vs t0 and f in the range@20.2,0.4#, t0[vt0 , for B
5Bmin5A2C andC/A50.8. Resonancep/q5(a) 2/3,~b! 3/5. Ob-
serve that the local maxima~with regard tot0! are the lowest~with
regard tof! at p, 5p/3, p/3 ~p, 9p/5, 3p/5, 7p/5, p/5!, respec-
tively, for p/q52/3 (p/q53/5). The variablesM 8, t0 , andf ~rad!
are dimensionless.
03621
s

III. INCOMMENSURATE ESCAPE-SUPPRESSING
EXCITATIONS

We now demonstrate the possibility of reducing chao
escape by incommensurate PEs~i.e.,V/v irrational! from the
results of the preceding section. This involves replacing
irrational ratioV/v with approximations derived from con
tinued fractions. This technique has been much used
studying phase-locking phenomena in both dissipative
Hamiltonian systems as well as in characterizing stra
nonchaotic attractors in quasiperiodically forced syste
@16#. Our approach clearly differs from that based on t
application of high-frequency PEs, which is discussed in
framework of an effective averaged nonlinear equation
Ref. @17#. To illustrate the procedure we intentionally choo
the golden sectionV/v5F[(A521)/2, since it is the irra-
tional number that is the worst approximated by ration
numbers in the form of continued fractions. As is we
known, F can be approximated by the sequence of ratio
numbers (V/v)k5Fk21 /Fk whereFk51,1,2,3,5,..., are the
Fibonacci numbers such that limk→`(V/v)k5(A521)/2.
For each (V/v)k we replace the quasiperiodically excite
system~3! @with V[(A521)v/2] by the periodically ex-
cited system

ẍ5x2bF11h sinS Fk21

Fk
vt1f D Gx22d ẋ1g sin~vt !,

~11!

giving a sequence of periodically excited systems whose
volved frequencies satisfy an ultrasubharmonic resona
condition. Now we can apply the theoretical predictions
Sec. II to each system~11! for increasing values ofk. Thus,
the corresponding values of the suitable initial phase
amplitude are@cf. Eqs.~8! and ~9!, respectively#

fsuitable,k5pS 2m1122n
Fk21

Fk
D ~mod 2p!, ~12!

hmin,k5S 12
C

ADRk , ~13!

Rk5
10bg

~Fk21 /Fk!
2@v2~Fk21 /Fk!

211#@v2~Fk21 /Fk!
214#

3
sinh~pvFk21 /Fk!

sinh~pv!
, ~14!

wherem,nare non-negative integers.

Remarks

First, for fixed v, the ratiohmin,k /hmin,̀ converges very
quickly to 1 ask→`. This means that the values ofhmin,k
associated with early convergents~3/5, 5/8, 8/13,...! are re-
ally very close to the limiting valuehmin,̀ corresponding to
F. Second, the successive convergents ofF ~1/1, 1/2, 2/3,
3/5, 5/8, 8/13, 13/21, 21/34, 34/55,...! present one even de
nominatorq for every two odd, and thus whether 0 is or
not one of the associated suitable initial phases depends
3-3
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R. CHACÓN AND J. A. MARTÍNEZ PHYSICAL REVIEW E65 036213
the parity ofq ~cf. the second remark of Sec. II!. Also p is a
suitable initial phase forall the convergents~cf. the first
remark of Sec. II!. Third, in contrast to the aforementione
asymptotic behavior of the amplitudeshmin,k , the number of
suitable initial phasesfsuitable,k tends to infinity ask→`,
and for each rational approximation toF, given by a certain
convergent, the corresponding values offsuitable,k are uni-
formly distributed in the interval@0, 2p#. Since two succes
sive convergentsFk21 /Fk , Fk /Fk11 differ only in ever
higher decimal places ask→`, one should expect that th
suppressive effective~observed! values of the initial phase
feffective, corresponding to a certain convergent, would
related not only to its corresponding valuesfsuitable,k but also
to the suitable initial phases associated with its preced
convergents. In particular, the effective valuesfeffective
should correspond to the points where the suitable in
phases associated with the chosen convergent and its p
dents concentrate. One expects this prediction to gain in
curacy ask→`.

IV. REDUCTION OF THE EROSION OF NONESCAPING
BASINS

For the escape model~3!, the initial conditions will deter-
mine, for a fixed set of its parameters, whether the sys
escapes to an attractor at infinity~with x→` as t→`!, or
settles into a bounded oscillation. As is well known@1#, there
can exist a rapid and dramatic erosion of the safe ba
~union of the basins of the bounded attractors! due to en-
croachment by the basin of the attractor at infinity~escaping
basin!. We shall show in the following how the erosion of th
safe basin is reduced under the theoretical conditions es
lished above. To generate the basins of attraction num
cally, we select a grid of~uniformly distributed! 3003300
starting points in the region of phase space$x(t50)
P@0,1.8#, ẋ(t50)P@20.8,0.8#%. From this grid of initial
conditions, each integration is continued until eitherx ex-
ceeds 20, at which point the system is deemed to have
caped~i.e., to the attractor at infinity!, or the maximum al-
lowable number of cycles, here 20, is reached. In the abse
of an escape-suppressing excitation (h50), we assume tha
the system presents a dramatic erosion and stratificatio
the basin~as in the example shown in Fig. 2 where the co
white represents the nonescaping basin and black the es
ing basin!. For the set of parameters considered in Fig
(b51,d50.1,g50.08,v50.85), we calculated, for eac
resonancep/q, the escape probability normalized to that
the corresponding case with no escape-suppressing ex
tion, P(h)/P(h50), versus the initial phasef for several
values ofh. Typically we found that no reduction of initia
escape is attained forh.hmin and arbitrary initial phase
with hmin given by Eq. ~9!. For small amplitudes (h
&hmin), the probabilityP(hÞ0) becomes lower thanP(h
50) over short ranges off which are typically centered on
~some of! the predicted suitable initial phases~in the afore-
mentioned sense! for each resonancep/q. As an example,
Fig. 3 showsP(h)/P(hÞ0) vs f for the resonancep/q
53/4 and the amplitudesh5$0.025,0.015,0.010,0.008%. The
theoretical predictions arehmin'0.0242 and fsuitable
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5$0,p/2,p,3p/2% @cf. Eqs. ~5! and ~8!#. One sees that the
normalized probability presents minima, as a function of
initial phase, that come progressively closer to the predic
suitable values as the amplitude decreases. The reductio
chaotic escape is achieved forh50.008 over a range
centered on the initial phasef5fsuitable[3p/2. A
further example is shown in Fig. 4 for the resonan
p/q58/9 and h5$0.08,0.03,0.022%. In this case, the
theoretical predictions arehmin'0.0217 and fsuitable
5$p/9,p/3,5p/9,7p/9,p,11p/9,13p/9,15p/9,17p/9%. For
h50.08 the normalized probability reaches its maximu
value ~;1.34! for any initial phase, which represents th
situation where the nonescaping basin has been comple
destroyed~for the resolution considered here!. For h,0.08
the normalized probability solely presents minima at the v

FIG. 2. Erosion basin of the system~3! for b51, d50.1, v
50.85, g50.08, andh50 in the window 0,x,1.8, 20.8, ẋ
,0.8.

FIG. 3. Normalized escape probability~dimensionless quantity
see the text! vs f ~rad! for four values of the amplitude:h
50.025 ~n!, 0.015~m!, 0.01 ~.!, and 0.008~j!. System param-
eters areb51, d50.1,g50.08,v50.85, andp/q53/4. Solid lines
are plotted solely to guide the eye. Dotted vertical lines indicate
predicted suitable initial phases.
3-4
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INHIBITION OF CHAOTIC ESCAPE FROM A . . . PHYSICAL REVIEW E65 036213
ues predicted above. One sees that forh50.022 ('hmin) the
reduction of chaotic escape is achieved over two range
the initial phase centered on each of the suitable ini
phases$7p/9,p%.

Consider now the case of incommensurate esca
suppressing excitations. The only ‘‘off-resonance’’ exci
tions that can be numerically considered are those with i
tional frequencies to the limits of computational precisio
As in the previous examples of arbitrary resonancesp/q, we
found—for sufficiently small amplitudes (h&hmin)—that
the overall behavior of the normalized escape probab
presents a minimum nearf5fsuitable5p ~see Fig. 4!, as
expected~cf. the first remark in Sec. II!. Figure 5 shows
P(h)/P(h50) vs f for the amplitudeh50.010 and three
values of p/q: the two convergents 3/5, 8/13, an
0.618 033 988 749, this last beingF to the limit of computa-
tional precision considered here. The theoretical predicti
for the threshold amplitude arehmin'0.028 57, 0.028 00, and
0.027 91, respectively@cf. Eqs. ~13! and ~14!#, which are
very close as predicted~cf. the first remark in Sec. III!. In
Fig. 5~a!, there are some clear-cut additional minima—whi
are not associated with any of the corresponding suita
initial phasesfsuitable5$p/5,3p/5,p,7p/5,9p/5%—that are
absent from the two lower plots in Fig. 4. Typically, th
number of such additional ‘‘off-prediction’’ minima increase
with increasing convergent order, as can be seen forp/q
58/13 in Fig. 5~b!. This confirms~see also Fig. 6 for addi
tional examples! the prediction in the third remark in Sec
III. It is also observed that, in general, the plot of the n
malized escape probability is asymmetric with respect to
particular suitable initial phasefsuitable5p: the ranges where
reduction of chaotic escape occurs are larger forf,p than
for f.p ~see Figs. 5 and 6!. Figure 6 gives plots of the
normalized escape probability vs the initial phase for
convergent p/q534/55 and the amplitudes h
5$0.010,0.015,0.020%. We typically found that the overal
behavior of P(h)/P(h50) vs f for a fixed amplitudeh

FIG. 4. Normalized escape probability~dimensionless quantity
see the text! vs f ~rad! for three values of the amplitude:h
50.08 ~n!, 0.03~m!, and 0.022~.!. p/q58/9, and the remaining
parameters are as in Fig. 3. Solid lines are plotted solely to g
the eye. Dotted vertical lines indicate the predicted suitable in
phases.
03621
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~and also the remaining parameters fixed! is quite similar for
all the successive convergents beginning with the third c
vergent or so, as can be appreciated by comparison of F
5~b!, 5~c!, and 6~c!. This is coherent with the insensitivity o
hmin with regard to the convergent order~cf. the first remark
in Sec. III!. Figure 6~b! @and to a lesser degree Fig. 6~c!#
shows that the overall behavior ofP(h)/P(h50) presents a
few dominant minima at certain effective initial phas
feffective ~cf. the third remark in Sec. III!, which cannot be
explained solely on the basis of the predicted suitable ini
phasesfsuitable5$(2n21)p/55, n51,...,55%. In order to test
the conjecture about the origin of the effective initi
phases~cf. the third remark in Sec. III!, we calculated the
histogram shown in Fig. 7, which is a plot of the density
suitable initial phases associated with the complete serie
convergents of F up to the ninth order p/q
5$1/1,1/2,2/3,3/5,5/8,8/13,13/21,21/34,34/55% vs the initial
phase. One observes three remarkable properties. First

e
l

FIG. 5. Normalized escape probability~dimensionless quantity
see the text! vs f ~rad! for h50.01, b51, d50.1, g50.08, and
v50.85. p/q5(a) 3/5, ~b! 8/13, and~c! 0.618 033 988 749 894
@.(A521)/2#. Solid lines are plotted solely to guide the eye. Do
ted vertical lines indicate the predicted suitable initial phases.
3-5
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R. CHACÓN AND J. A. MARTÍNEZ PHYSICAL REVIEW E65 036213
histogram is asymmetric with respect to the central valuef
5p: the number of maxima of the density function is larg
for f,p than for f.p. This is coherent with the afore
mentioned asymmetry of the distribution of ranges wher
reduction of chaotic escape occurs. Second, the density f
tion has its main maxima~density>3! at and only at initial
phases that roughly coincide with the aforementioned ef
tive initial phasesfeffective @compare Figs. 6~c! and 7#. Third,
the density function has its highest maximum at the parti
lar suitable initial phasefsuitable5p as predicted~cf. the sec-
ond remark in Sec. III!. Such a maximum is the most isolate
in the sense that the range of initial phases aroundp with

FIG. 6. Normalized escape probability~dimensionless quantity
see the text! vs f ~rad! for the convergentp/q534/55, and the
remaining parameters as in Fig. 3.h5(a) 0.020,~b! 0.015, and~c!
0.010. Solid lines are plotted solely to guide the eye. Dotted vert
lines indicate the predicted suitable initial phases.
03621
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null density is the largest. This is coherent with the fact th
the reduction of chaotic escape expected atfsuitable5p is
hardly observable, it being sharply localized when in fac
does occur@see, e.g., Figs. 5~b! and 5~c!#. It is expected that
the mechanism discussed for the reduction of chaotic esc
by incommensurate PEs will work for amplitudes sufficien
lower than the theoretically predicted threshold amplitude

V. CONCLUSION

In sum, we have shown that the effectiveness of a PE
satisfies an ultrasubharmonic resonance condition with
escape-inducing excitation in reducing chaotic escape fro
potential well strongly depends on its initial phase. Analy
cal estimates of the suitable initial phases and amplitudes
reducing the chaotic escape were found by means of MA
addition, the reduction of chaotic escape by applying sm
amplitude incommensurate PEs was demonstrated from
findings for ultrasubharmonic resonances. For this case,
proposed reduction mechanism demonstrates the great
plexity of the role played by the initial phase of the PE.
general, numerical results based on a high-resolution gri
initial conditions showed excellent agreement with the th
retical predictions of the escape-reducing initial phas
while the values obtained numerically of the amplitude
escape reduction were~in some cases! lower than those pre-
dicted from MA. We should emphasize that the theoreti
approach we have discussed as well as the conclusion
chaos can be reduced~or even completely suppressed! by
incommensurate PEs are both general enough to be ap
to many other dissipative nonautonomous systems.
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FIG. 7. Histogram showing the density of suitable initial phas
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